

neoVERSE Power TPD drug discovery with proteomic data

neoVERSE. Transform proteomic data into biological knowledge.

Efficient and straightforward analysis of proteomic data is crucial for its immediate application in drug discovery, including target identification and validation, SAR-based compound optimization, compound design, and library expansion.

neoVERSE is a user-friendly, fully automated data analysis suite that provides advanced visualization and analysis tools for the intuitive and interactive exploration of large proteomic datasets. With customizable features and informative dashboards, **neoVERSE** enables comprehensive project evaluation with a single click.

Users can adjust performance parameters to conduct detailed statistical and activity analyses at both the individual compound and project levels. **neoVERSE** also supports extensive meta-analysis and offers tools to assess the biological and clinical relevance of potential degrader target proteins.

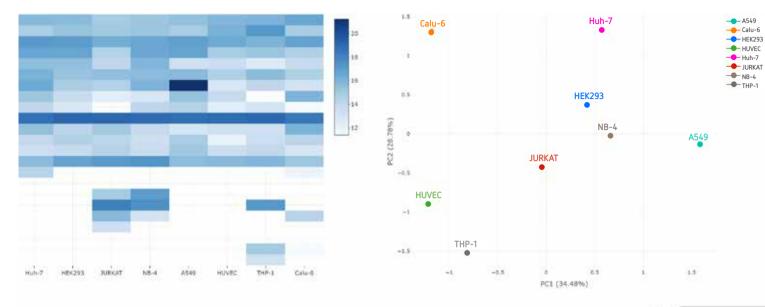
Data sharing and export are optimized for seamless integration into drug discovery decision-making. As a web-based application, **neoVERSE** is easily accessible to NEOsphere Biotechnologies' partners for analyzing data from collaborative projects. The data displayed in **neoVERSE** are generated by integrating advanced data processing software, such as DIA-NN, with NEOsphere Biotechnologies' validated biostatistical pipeline, ensuring the highest standards of data quality and reliability. Our scalable and fully automated DIA-MS data analysis provides exceptional precision, accuracy, completeness, and sensitivity, enabling the swift and simultaneous processing of high-throughput proteomics data with turnaround times tailored to drug discovery needs.

We offer the highest quality statistical analyses, including rigorous quality control for protein identification and quantification, advanced data filtering, proprietary normalization, batch correction, and highly sensitive differential abundance testing using sophisticated linear models.

The data processing and analysis tools developed by NEOsphere Biotechnologies have been extensively tested for consistent reliability and reproducibility across thousands of mass spectrometry runs and samples.

Trained and optimized on > 100,000 samples	> 11,000 proteins per sample	Median CVs of 3-5 %	1% false discovery rate	> 99% data completeness at protein level
> 100,000 samples	per sample	01 5-5 70	discovery rate	protein level

4


Optimize Your Project Design

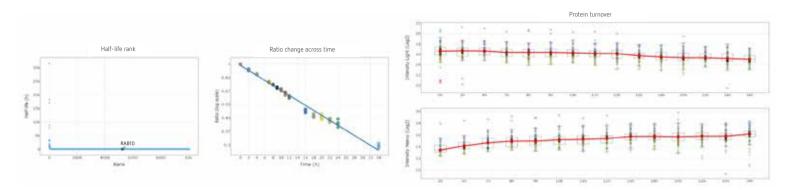
neoCELL is a comprehensive database offering unparalleled insights into protein expression across a wide range of cell lines and tissues. It provides detailed information on the abundance, intensity, and half-life of over 15,000 proteins, as well as cellular IMiD responsiveness at the proteome level.

Designed to quickly identify the optimal cell line or tissue for analyzing specific targets or E3 ligases, **neoCELL** also enhances proteome coverage for selectivity or toxicity studies.

neoCELL is fully customizable and can seamlessly integrate additional cell or tissue data upon request to meet our partners' needs.

Cell brass	Hub-7 HEK293 JURIKAT NB-4 A549 H THP-1 Calu-8	UVEC
Feature level	Genes	,
Ganes	select a gene iKZF1 KZF3 RAB28 CSN R0K166 Z5P01 GSPT1 GSPT2 SALL4 DTWD1 WIZ GZF1 FI21 CVP16A1 KG KZF4 ZMP36 ZMP517 FAM83G ZMF5K ZNF787 ZBT578 E4F1 PATZ1	DF2
Visualization	PCA	

											Sei	arch:		
Genes	6	Huh-7	- 6	HEK293	JURKAT	÷.	NB-4	1	A549	HUVEC	THP-1		Calu-5	
wiz		15.79		15.72	14.9		15.21		15.46	15.9	16.06		16.66	
ZFP91		14,77		15.37	15.09		15,26		14.9	16.16	17.33		14.85	
CSNK1A1		17.21		17.1	16.29		16.65		16.91	16.51	16.04		16.83	
PATZ1		16.74		16.75	14.51		10.66		16.8	14.9	15.27		14.57	
RAB28		15.57		15.51	14.08		15.94		13.41	13.61	12.57		13.75	
ŻNF787		16.1		15.35	15.54		15,68		15.72	14.62	15.65		14.6	
GZF1		16.48		14.89	14.54		16.03		21.22	t2.97	14.03		13.2	


Explore the Impact of Your Drug on Protein Homeostasis

neoCELL also provides quantitative analyses of protein turnover, monitoring proteome-wide protein synthesis and degradation in dynamic systems. This valuable data assists in selecting cell lines for analyzing your target of interest and optimizing drug dosing strategies for proteins with varying synthesis rates.

Protein half-lives for over 10,000 proteins are reliably quantified per cell line across multiple timepoints, with accuracy ensured through routine correction for cell doubling time.

neoCELL provides our partners access to extensive protein half-life data across a wide range of cell lines, with analyses of your cell line of interest available anytime.

Cell line	HEK293_LH	
Feature level	Genes	
Genes	select genes	

Protein Turnover in HEK293 cells

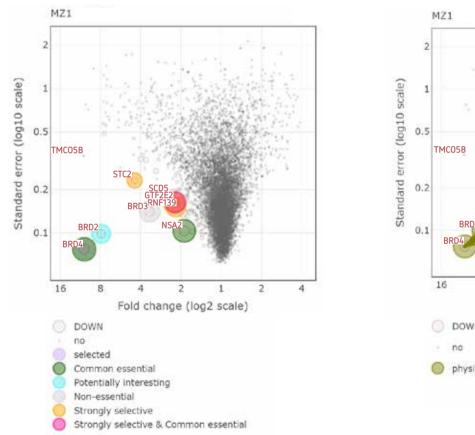
	Genes	Protein groups	Half-life (h)	Half-life (h) adjusted for cell doubling time	R-squared	Degradation constant	Number of time points
1	YTHDF2	Q9Y5A9	12.92	22.17	0.99	-0.05	15/15
2	MARCKSL1	P49006	14.36	26.75	0.99	-0.05	15/15
3	RIF1	Q5UIP0	15	29.08	0.99	-0.04	15/15
4	NUFIP2	Q7Z417&Q7Z417-2	17.24	38.82	0.99	-0.04	15/15
5	GTF21	P78347; P78347-2; P78347-3; P78347-4	17.64	40.94	0.99	-0.04	15/15
6	CEP43	095684; 095684-2	17.78	41.72	0.99	-0.04	15/15
7	SMC3	Q9UQE7	17.94	42.57	0.99	-0.04	15/15
8	AHSA1	095433	18.04	43.13	0.99	-0.04	15/15
9	LARP4B	Q92615	18.06	43.24	0.99	-0.04	15/15
10	MARCKS	P29966	18.43	45.45	0.99	-0.04	15/15
11	RAB10	P61026	18.7	47.16	0.99	-0.04	15/15
12	UBL4A	P11441	18.73	47.31	0.99	-0.04	15/15

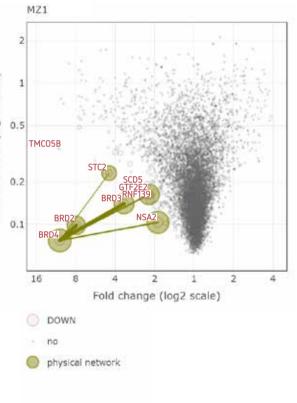
Assess Your Compound Library at a Glance

neoREVIEW offers a comprehensive suite of intuitive analysis tools and interactive menus for seamless performance reviews of entire proteomic datasets.

Its detailed statistical evaluations and activity analyses at both the individual compound level and across projects enable effective assessment of efficacy, potency, and specificity for both single compounds and entire compound libraries.

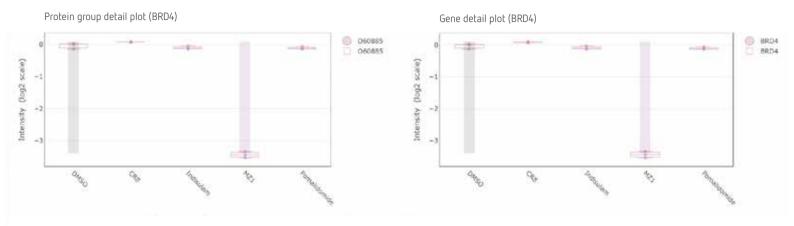
Standard settings facilitate robust analysis, while customizable parameters allow for more in-depth exploration.

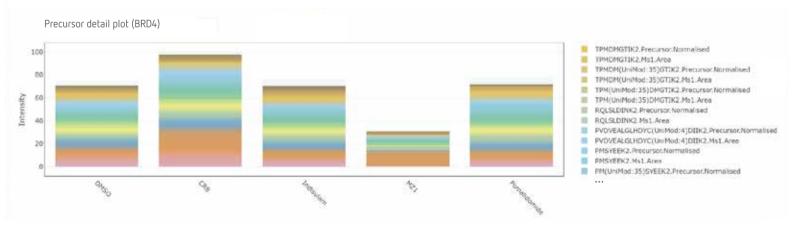

Project	reo						
7,08	01_proheemiss	development					
Unt	PD NE 00000						
0.00	F12,745,2000						
Output	PDR1_ve002						
Compound	M21						
	® Prestoan	⊗ Next					
Control	DMSO						
Feature level	Genesi						
Feature	Protein Groups)					
Genes	pelect a gone						
Resit / Nghight	E Dessiect		•	laniant.			
Restyle	C tripoled	C Curre		C Rebbel	0.00	and a	
Storing	neoREVIEWso	sone	•				
Bostives	DioMap		•	Sgrillcant	ÓŇ	OFF	
Networka	STRING DB			Significant	ON	OFF	
	Edges	8		Scene	8	•	
Volcano type	Log2 told chem	ge va Standard	entr				
Significance otherie	Adjusted p-val	ue .					
Log fold change	Log2 fold chan	ge / moderated	signt	tance			14
X-aux	* Fold shanpe	(viene Spot)					
Statistical text	LIMMA						



Displayed are volcano plots from a proteomic analysis of HEK293 cells treated with MZ1, a cerebion E3 ligase modulator. The x-axis depicts the fold change (log2) in compound vs. DMSO-treated cells, while the y-axis represents the standard error. Proteins that are significantly down-regulated upon compound treatment are displayed in red. A convenient hover-over functionality allows for the quick evaluation of relevant technical and quality criteria for each detected protein.

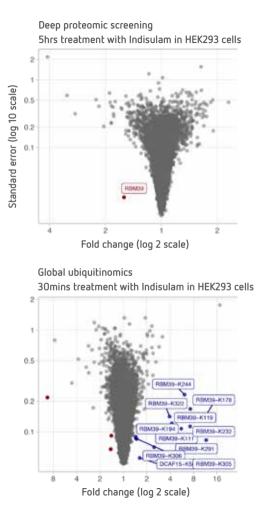
Project	160						
	AN COMPANY	-					
7(54	01_prohiemiss	-oevelopment					
Unit	PD_NE_00000	1				•	
Output	PDR1_vs002						
Compound	M21					•	
	@Prestous	() Next					
Control	DMSO					•	
Feature level	General						Select feature
Festure	Ocres Ptotein Groups						level
Genes	pelect a gone					-	
filesat / highlight	E Deseiect	3	Bi Hignight				
Restyle	C traved	C CANN	C Rebbel		10.0		
Storing	neoREVIEWso	010					
Electres	DepMap		Significant	DN	OFF		
Networks	STRING DB		Significant	ON	OFF.		
	Edges	8	Scene	2	•		
Volueno type	Log2 told chere	pe va Standard er	nur				
Significance otherie	Adjusted p-valu					•	
Log fold shange	Log2 fold chan	çe / moderaled si	grificance				
X-am	* Fold shange (log2 scale)					
Statution least	LIMMA						

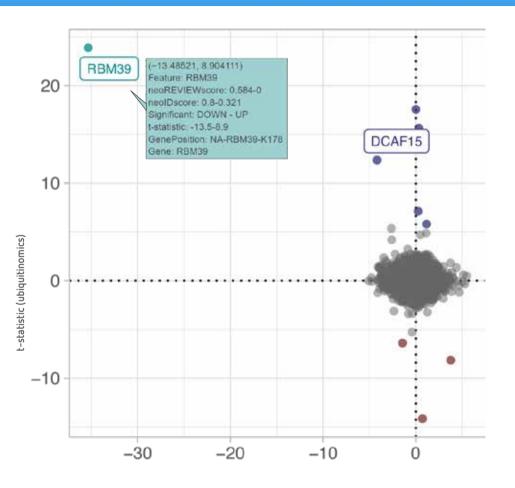

Visualizations include specific annotations, classifications, and protein interactions, along with network information and other relevant details that can be effortlessly integrated into each plot.



Project 7,58 Unit.

Project	160					
7,54	01_proteomics_	development				
Une	PD_NE_000001					
Output	FDR1_w002					
Compound	M21					
	@Prestous	⊗ Nect				
Cormit	DARSO					
Feature level	Genes					Select feature
Festure	Ocros Ptotein Groups					level
Genes	select a gone					
Real / highlight	E Deseiect		Righlight			
Restyle	D imputed	C Davins	C Rebbel		C.e	
Scoring	neoREVIEWsco	• 01				
Bostins	DipMap		SgriPcant	ON	OFF	
Networks	STRING DB	*	Significant	ON	0##	
	Edges		Sicere		•	
Volcano type	Log2 told ching	e va Standard error				
Significance otherie	Adjusted p-value					
Log toil change	Log2 fold chang	e / moderated signit	Icance			
Xam	* Fold shange ()	og2 scale)				
Statistical text	UMMA					

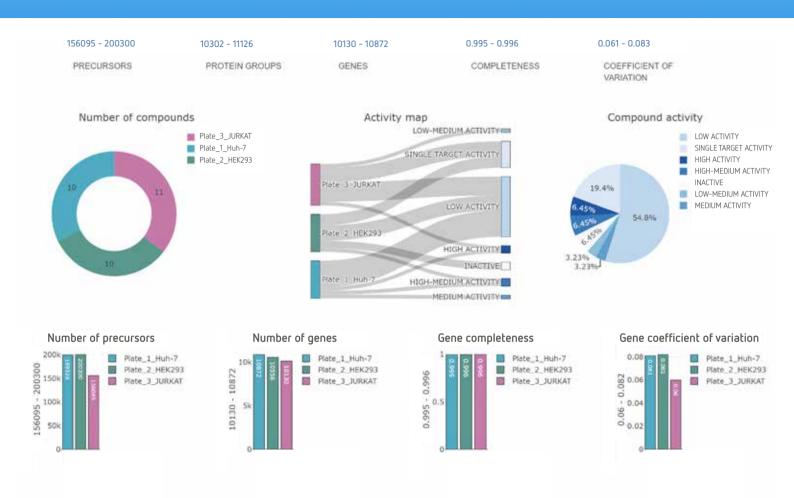



Uncover Key Characteristics of Your Compounds

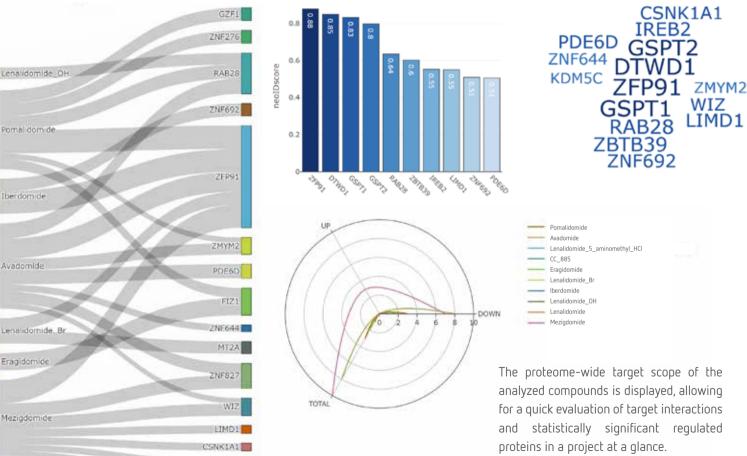
neoCOMPARE provides a structured overview of essential compound characteristics, including proteome-wide target profiles, changes in degradation profiles based on treatment time or concentration, and treatment comparisons between different cells or tissues.

Additionally, it facilitates direct comparisons between diverse experiments, such as global proteomics and ubiquitinomics (as illustrated on the right). This feature allows for the rapid identification of proteins that are simultaneously degraded and ubiquitinated, highlighting potential direct degradation targets.

Comparison Nature	t-statistic				Select
	Tatatelic				level
	Log2 fold change				
	Shendard error				
	Reproducibility				
	Sienn diegramm				
Restyle	D Imputed	Relibe		C Dummarice	
	Dip-Nord	D Mered	1.0		
	10.00				
Scoring	neoREV/EWacone				
	none.		ct the type of scoring		
	micREVENscore	Stated for	comparison pital comparison pital		
	net/Dicore	-		100	
Save comparison	its. Default	25. w/ se	lection .	PNG: POF	
MADLED	20	-			
NDOWN	20	• 20		BUP	


t-statistic (proteomics)

Leverage Proteomic Data for Compound Optimization


neolD is the fastest and easiest solution for analyzing large proteomics datasets. It enhances drug discovery and SAR-based drug optimization with advanced features and customizable functionalities.

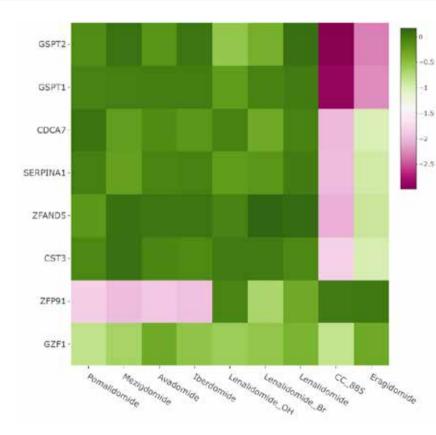
Intuitive dashboards provide a complete project overview or allow users to focus on selected parameters. Interactive visualizations of drugtarget interactions generate biological activity maps for entire compound libraries, facilitating the identification of the most active compounds against targets of interest.

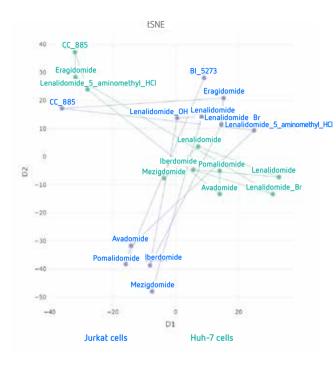
Hite	ZFP91 DTWD1 ZBTB39 RAB38 ZNF692 ZNF644 ZMYM2 PDE60 GSPT1 GSPT2 GSNK1A1 IREB3 WIZ LIMD1 KDM5C	2
Contrasts	Pomalidomide - DMSO Avadomide - DMSO Lenalidomide _5_aminomethyt_HCI - DMSO CC_885 - DMSO	
Scoring	neolDscore	٠
Scoring level		1
Rostyla	🗌 Imputed 🖂 Relabel 📋 Gene-leve	Ğ.
Significance criteria	Adjusted p-value	•
Moderation	368	•
P-value	0.01	•
Fold	3	•
Focus	select focus	
Exclude	select to exclude	
Activity classes	SINGLE TARGET ACTIVITY LOW ACTIVITY	

NT5DG1

HELLS

Iberdomide


Avadomide


Interpret Complex Data with Ease

neoX simplifies the visualization and meta-analysis of complex, high-dimensional, and large-scale proteomic data, enabling seamless comparison and evaluation across different experiments and projects.

By integrating statistical analysis tools such as PCA (principal component analysis), t-SNE (t-distributed stochastic neighbor embedding), and heat maps, **neoX** identifies patterns, clusters, and specific data points, making them immediately actionable.

Project	140		٠
Туре	02_proteomics	_screening	
tinit	Cell_line_chai	acterization	•
Platen	select plates	P5_CC_000002_Huh-7_FD	R
Feature level	Protein Groups	6	
Comparison feature	t-statistic		•
Genes	select genes		
Contrasts	Lensildomide	- DMSO Avedomide - DM Br - DMSO Iberdomide - D OH - DMSO Lenalidomide DMSO	MSO
Significance orteria	Adjusted p-val	90	
Moderation	yes		
P-value	0.01		
Faid	4		-
Direction	🖬 Down	🗆 Up	
Selection	C ISNE	C Relabel	Remove

Easily visualize how different compounds affect your targets of interest.

Gain an immediate overview of proteome-wide compound effects across diverse cell lines.

Transform Proteomic Data into Biological Knowledge

neoBIOLOGY swiftly evaluates the biological and clinical significance of proteomically identified target proteins and ubiquitination sites, along with their interactions with tested compounds, thereby unlocking new opportunities for drug discovery.

It leverages a wealth of data sources, including preclinical and clinical data, relevant literature, comprehensive disease and drug databases, and detailed structural information down to the peptide level, for thorough evaluation of potential target proteins.

Project	140	
Type	01_proteomica_development	
Unit	PD_NE_000001	•
Output	PDR1_ya002	•
Restyle	🖸 Gana-lavel 🖂 imp	and
Scoring	resiDecore	•
Score		1-1-1
Activity	Select activity class	
Moderation		•
	Adjusted produce	•
Criteria	Adjusted p-calue	•
Moderation Orlanta P-vatue Fold		•) • • •

Info box

Show 7 ~	entries			Search:	
Gene	Druggable genome member	Ubiquitination [uniprot]	Ubiquitination [database]	Half-life [min-max] h	G- loop
1 NSA2	No	Yes	Yes	13.77-24.19	No
2 CCNK	No	No	Yes	42.16-143.9	No
3 MPV	No	No	Yes	153.3-153.3	No
4 FYTTD1	No	Yes	Yes	11.63-19.69	No
Showing 1 to 7 a	d 19 entries			Previous 1 2 3	Net

Target-disease relationship

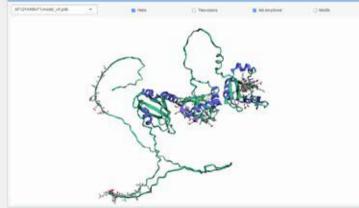
			reticulocyte count
body height	tota	l cholester Cornelia de Lan	mean corpuscular volume
congenital hear mitochondria	amma-glu Charco Intellecti endometrial of D tongue neopli ean body mass	cancer Intellectual de	Cutaneous melanoma

Project Type UHR Output Restyle

Scoring

Score

Activity.


Moderation Onteria Privature Fold Contrastis

190	,
01_proteomics_development	
PD_NE_000001	
AD41 [*] A9003	,
G Oere-level 🗆 1	puled
nectDecore	
nextDoorn nextREV/EWebre	
and a second second	1.1.1.
Benet activity clean	
Benet activity clean	
Bellect activity class	
Telect activity class yes Adjusted p-value	

Alphafold structure

Family & Domains - table

1970	-			
	Start	end	description	type
1	1	1	Removed	Initiator methionine
2	1	146	Disordered	Region
3	2	530	RNA-binding protein 39	Chain
4	2	2	N-acetyalanine	Modified residue
5	2	2	in dbSNP:rs1803701	Natuarl variant
6	9	31	Basic and acidic residues	Compositional bias

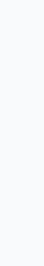
Precursor intensity across samples

Protein sequence

4 FVxxL

Internal

395-400


LAUPPHARE IN			NACIONAL DE LA COMUNICACIÓN DE L	PORTO DI UNITA DA PIL O PIL CA SON S. I PILIS O MARI, MULTORI, HUMINI	nor tor Banana Provinsi Nation Officer States	Manager Strategy
Degrons						
Degron	Degron loaction	Degron Position Degron type	Reference [degron]	Known UPS	Refenence [Known UPS]	Licence
1 SFVxxL	Internal	394-400	37738965	MYH11	37738965	CC BY 4.0
2 Wxxxl	Internal	442-447	37738965	LRRC43	37738965	CC BY 4.0
3 Wxxxl	Internal	442-447	37738965	PDZRN3	37738965	CC BY 4.0

CUL1_FBX038 37738965

AGRN

37738965

CC BY 4.0

INACTIVE LOW ACTIVITY LOW-MEDIUM ACTIVITY
LOW AREDINAL BOTH TO THE
MEDIUM ACTIVITY
HIGH MEDIUM ACTIVITY
HIGH ACTIVITY
UP-REGULATION ONLY

.

.

Moderation

Project

Type

Unit

Output

Rest/le

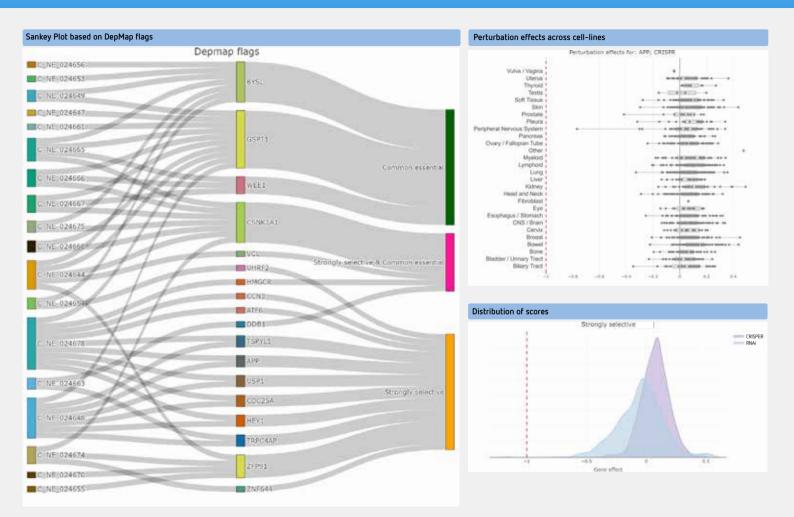
Scoring

Score

Activity

Adjusted p-called Adjusted provise P-value

yes.


Criteria

P-value.

Fold

Contrast(a)

28

All Project Results at a Glance

neoSUBSTRATE is a convenient platform for comparing a wide range of experimental data, enabling the rapid identification of compounds with the highest specificity and sensitivity for target proteins of interest across entire projects.

It facilitates the visualization and comparison of experimental conditions, such as testing compounds in various cells types, at different time points, or across experiments such as proteomics and global ubiquitinomics.

Feature level	Genes	•
Project	reo	•
Туря	62_proteomics_screening	•
Unit	Cel_Ine_characterization	•
Putes	Select places PS_CC_000002 Huh-7_FDR PS_CC_000003 A-436 FDR PS_CC_000004 HER283 FDR PS_CC_000005_JURKAT_FDR	•
Scoring	neolDacore	•
Scoring level		
Garry	≜ Query Save ≜*xtas	
Operations	+ Add - Remove Tistene	đ
Options	C Thresholds 🖓 imputed 🗇 C	ŧ
Significance criteria	Adjusted p-value	•
Moderation	991	•
P-value	< • 0.01	÷
Fold		•
Activity classes	SINGLE TARGET ACTIVITY LOW ACTIVITY LOW-MEDIUM ACTIVITY	t -
Columns	Project Culput CF Celluins Timepoint Concentration Contrast Activity Genes FDRcontrol Condition/Compiliteness moderatedT moderatedLogPC	•

how 5 ~	entries										5ee	rch:	
Project	Output	CF	CellLine	Timepoint	Concentration	Contrast	Activity	Genes	FDReastrol	ConditionCompleteness)	moderatedT	moderatedLogFC	moderal
1 000	PS_CC_000002_Hub-7_FDR	0	9687	21	10µM	Pomalidomide - DMSO	LOW ACTIVITY	ZFP91	0.	1	-17	-1.5	
2 000	PS_CC_000002_Hub-7_FDR	0	HUHT		10µM	Pomalidonside - DMSO	LOW ACTIVITY	DTWD1	3	(st	-6.8	-0.83	
3 860	PS_CC_000002_Hub-7_FDR	0	HuH7	- 2%	_ 10µM	Pomalidomide - DMBO	LOW ACTIVITY	RA528	3	्रा	-7.5	40.96	
6 060	PS_CC_000002_Hub-7_FDR	0	HART	25	10µM	Pomalidorride - DMSO	LOW ACTIVITY	WIZ		.a	-7.8	-0.20	
5 neo	PS_CC_000002_Hub-7_FDR		Hutt	26	10µM	Pomalidomide - DMSO	CONTRACTOR OF	100 100 14			-7.1	-0.79	

CMPD-TARGET scoring

Show	10 🗸 entries				Search:			
	CmpdTargetPair	Genee	CF	neolOscore 1	Activity	Nr ÷	Project	Qutput
29	Mezgdomide - ZFP91	ZFP91	.0	//3	LOW-MEDIUM ACTIVITY	15	100	PS_CC
24	Avadomide - RAB28	R4828	0	0.84	LOW ACTIVITY		neo:	P5_00
8	Lenalidonside - CSNR1A1	GENKIAT	0	0.54	LOW ACTIVITY	- 0	1960	PS_CO
10	Mezigdomide - 942F1	HZF1	0	<u>_1</u>	LOW-MEDIUM ACTIVITY	.6	1100	PS_CC
26	Mezgdomide - WIZ	wiz	0	0.84	LOW ACTIVITY		neo	PS_CC
3	Avadomice - DTWD1	DTWD1	0	0.76	LOW ACTIVITY	. 5	1990	PS_CC
5	OC_885 - G5PT1	GSPT1	0	0.85	LOW ACTIVITY	5	1100	PS_CC
12	Mezigdomide - KZF3	IKZF3	0	1	LOW-MEDIUM ACTIVITY	4	nto	PS_CC
28	Avadomide - ZBTB39	ZBTB39	0	0.59	LOW ACTIVITY	4	heo	PS_CC
30	Avadomide - ZMYM2	ZMYM2	đ	0.53	LOW ACTIVITY	-4	000	PS_CC
4 1								

Sho	w 10 V entries				Search:		
	CmpdTargetPair	Games	CF (neolDecore	Activity	CellLine	Timepo
t.	Lenaldomide_OH - CSNK1A1	CSNK1A1	0	0.5	LOW ACTIVITY	HuH7	20
2	Lenalidomide - CSNK1A1	CSNK1A1	0	0.54	LOW ACTIVITY	HUH?	2n
3	Mezigiorride - CSNK1A1	CONKIAT	0	0.54	LOW ACTIVITY	HuH7	2h
4	Mezigdomide - CSNK1A1	CSNK1A1	0	0.24	LOW-MEDIUM ACTIVITY	JURKAT	50
5	Lenaldomide_DH - CSNK1A1	CSNK1A1	0	0.31	LOW ACTIVITY	JURKAT	5h
e	Lenalidomide_OH - CSNR1A1	CSNK1A1	0	0.42	SINGLE TARGET ACTIVITY	HEX293	5h
7	Lenalidomide - CSNK1A1	CSNK1A1	Ċ.	0.35	SINGLE TARGET ACTIVITY	HEK293	5h
8	Mezigdomide - CSNK1A1	CSNR1A1	ė.	0,49	LOW ACTIVITY	HEK293	śn
4							
sho	wing 1 to 8 of 8 entries				Pr	evicua 1	Net

Tailored Statistical Analysis for Your Needs

neoBASE is a sophisticated database that facilitates interactive querying of all statistical metrics relevant to large-scale proteomic data analysis.

Key statistical parameters - such as p-value, fold change, FDR control, and t-statistical evaluations can be displayed across projects and at various levels including genes, proteins, or peptides. Threshold values and default settings are easily adjustable, allowing for thorough data evaluation tailored to your specific needs.

Feature level	Genes	
Project	neo	
Genes	select genes ZFP91	
Proteins	select proteins	
Scoring	neolDscore	•
Scoring level	8	
Options	Thresholds	
Significance oriteria	Adjusted p-value	
Moderation	yes	•
P-sular	< × 0.01	
Fold	6	1
Columns	Project Output CF Cel Timepoint Concentration Activity Genes FDRcont ConditionCompleteness	Contrast
Query	& Query Save	A. Six

how 2	20 ~ en/	tries								Search	n: CC_00000	
23	Project	Output	CF	CellLine	Timepoint	Concentration	Contrast	Genes	FDRcontrol	ConditionCompleteness	moderatedT	moderated
138	neo	PS_CC_000006_SK-MEL-30_FDR	0	SK-MEL-30	5h	10µm	Mezigdomide - DMSO	ZFP91	true	true	-22	
139	neo	PS_CC_000005_JURKAT_FDR	ò	Jurkat	5h	10µm.	Mezigdomide - DMSO	ZFP91	true	true	-44	
140	neo	PS_CC_000005_JURKAT_FDR	0	Jurket	5h	10µm	Iberdomide - DMSO	ZFP91	true	true	-31	
141	neo	PS_CC_000004_HEK293_FDR	0	HEK293	5h	10µm	Pomalidomide - DMSO	ZFP91	true	true	-16	
142	neo	PS_CC_000004_HEK293_FDR	0	HEK293	5h	10µm	Iberdomide - DMSO	ZEP91	true	true	-20	
143 1	100	PS_CC_000004_HEK293_FDR	0	HEK293	5h	10µm	Mezigdomide - DMSO	ZFP91	true	true	- 514	
144	neo	PS_CC_000002_Huh-7_FDR	0	HuH-7	Zh	10µm	Pomalidomide - DMSO	ZFP91	true	true	-17	
145	neo	PS_CC_000002_Huti-7_FDR	0	HuH-7	2h	10µm	Avadomide - DMSO	ZFP91	true	true	-19	
146 1	neo	PS_CC_000002_Huh-7_FDR	0	HuH-7	2h	10µm	Iberdomide - DMSO	ZFP91	true	true	-18	
147	neo	PS_CC_000001_PC-3_FDR	0	PC-3	5h	10µm	Pomalidomide - DMSO	ZFP91	true	true	-24	
148	neo	PS_CC_000001_PC-3_FDR	0	PC-3	5h	10µm	Avadomide - DMSO	ZFP91	true	true	+18	
149 1	neo	PS_CC_000001_PC-3_FDR	o.	PC-3	5h	10µm	Iberdomide - DMSO	ZFP91	true	true	-25	
150	neo	PS_CC_000001_PC-3_FDR	0	PC-3	Sh	10µm	Mezigdomide - DMSO	ZFP91	true	true	-26	
151 1	100	PS_CC_000003_A-498_FDR	0	A498	5h	10µm	Mezigdomide - DMSO	ZFP91	true	true	-15	
0												

Showing 1 to 14 of 14 entries (filtered from 151 total entries)

Previous 1 Next

About NEOsphere Biotechnologies

We are the leading partner in TPD proteomics for pharmaceutical and biotechnology companies, dedicated to support drug discovery and development of comprehensive, innovative degrader pipelines. Our platform integrates advanced mass spectrometry technologies with cutting-edge biostatistical data analysis, enabling high-throughput proteomic screening of entire degrader libraries and robust mechanistic target validation. We offer unmatched sensitivity, precision, and turnaround times, empowering the identification of novel degrader targets and systematically exploring previously undruggable therapeutic spaces.

NEOsphere Biotechnologies GmbH Fraunhoferstrasse 1 82152 Planegg, Germany www. neospherebiotechnologies.com info@neospherebiotech.com